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Abstract This paper introduces Nonlinear Modified
Positive Position Feedback (NMPPF) control approach
for nonlinear vibration suppression at primary reso-
nance. Nonlinearity in the system is due to large defor-
mations caused by high-amplitude disturbances, while
this control approach is applicable to all types of nonlin-
earities in resonant structures. NMPPF controller con-
sists of a resonant second-order nonlinear compensator,
which is enhanced by a lossy integrating compensator.
The two compensators create a combination of expo-
nential and periodic control inputs, which needs inno-
vative time scaling for using the Method of Multiple
Scales to obtain the analytical solution of the closed-
loop system. The results of the analytical solution for
the closed-loop NMPPF controller are presented and
compared with the result of the conventional PPF con-
troller. Effects of the control parameters on the sys-
tem response are comprehensively studied by parame-
ter variations. The approximate solution is then ver-
ified using numerical simulations. According to the
results, the NMPPF controller provides a higher level
of suppression in the overall frequency domain, as the
peak amplitude at the neighborhood frequencies of the
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primary mode is reduced by 44 %, compared to the
PPF method. The tunable control parameters also give
more flexibility to create the expected type of system
response.
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1 Introduction

Nonlinear vibrations occur in structures due to differ-
ent causes, such as nonlinear properties of materials,
geometric nonlinearities, and nonlinear external forces.
In some cases, nonlinear terms can be neglected, but
not when the system is under main resonance excita-
tion with large motions [1,2]. Additionally, in micro-
scale applications, nonlinearity of the system becomes
more important as more accurate motion or measure-
ment is required [3]. Resonant vibrations reduce sys-
tem precision, as they may also damage the structure.
As a solution to this problem, active vibration con-
trol techniques have been introduced and implemented
[4]. Active vibration control is typically applied using
piezoelectric ceramics as actuators and sensors, as these
piezoelectric actuators have also been used in atomic
force microscopes to produce high-frequency vibra-
tions [5,6], forced vibrations of viscoelastic cantilevers
[7], and precise motions [8,9].
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Fig. 1 The cantilever beam
and the coordinates v'dx

(1+u')dx

Piezoelectric Actuator 

x, u

y, v dl

Various types of controllers have been developed to
channel the resonant excitation energy to a secondary
system in order to attenuate vibrations in the main sys-
tem. An example is the delayed-feedback approach,
which has been used for nonlinear vibration control of
a cantilever beam [10]. This control method focuses
on the problem of intrinsic time delay between the
control input and the real-time system actuation. Non-
linear saturation controller (NSC) is one of the fre-
quently applied approaches [11], as it has been used
with some other selected algorithms on a geometri-
cally nonlinear beam-like composite structure [12,13].
Neural Network [14] and Receptance [15] are two other
methods implemented for nonlinear vibration suppres-
sion. A control law based on cubic velocity feedback
was proposed for a system under principal parametric
excitation in single-mode control [16]. It has been dis-
cussed that the addition of a linear velocity feedback
is mathematically equivalent to adding viscous damp-
ing and, therefore, would not be effective in reduc-
ing nonlinear vibrations. One of the methods that have
been used for many vibration control purposes is the
Positive Position Feedback (PPF) [17]. The PPF con-
troller was later discussed and used for a nonlinear
dynamic model [18,19]. Although unwanted vibra-
tions are reduced to lower levels using the PPF con-
troller, the closed-loop system becomes more flexible,
leading to a larger steady-state error [20]. Therefore,
a regular PPF controller may not necessarily provide
the ultimate vibration attenuation level. To overcome
this issue, a first-order compensator was added paral-
lel to the second-order compensator. The results were
the Modified Positive Position Feedback (MPPF) [21,
22], the Modified Positive Velocity Feedback (MPVF)
[23], and the Modified Acceleration Feedback (MAF)
[24].

In this paper, NMPPF approach is introduced and
implemented for systems that undergo nonlinear vibra-
tions. Here, large amplitude vibrations in the struc-
ture are the source of nonlinearity in the system. A

cubic nonlinear term is added to the linear model of the
MPPF controller to compensate for the cubic nonlin-
earities of the system model. The dynamic equation of
the mechanical structure is obtained using the Hamil-
ton principle [25]; then, the Method of Multiple Scales
[26] is utilized to provide the closed-form solution for
the closed-loop control system. The modulation equa-
tions are then used for the closed-loop stability and
frequency response analyses. In the results section, per-
formance of the new NMPPF and the conventional PPF
approach are compared, and the influence of each para-
meter variation on the system response is demonstrated
and discussed.

2 Mathematical modeling of the structure

A cantilever beam is considered as a flexible structure
that undergoes large amplitude deflections. Figure 1
shows the schematic view of the beam and correspond-
ing coordinates. u is the deformation in x direction,
and v is the deformation in y axis. A piezoelectric
ceramic is attached to the cantilever beam, to apply
the required actuation moment to the beam. Since the
thickness of the piezoelectric actuator is much smaller
than the thickness of the beam, and it is attached just
on a small length, the cantilever is assumed uniform.

According to Fig. 1, the bending angleψ , is defined
as:

tanψ = v′

1 + u′ , (1)

where prime indicates the differentiation with respect
to x . Strain e is then calculated such that [3,27]:

e = dl

dx
− 1 =

√
(1 + u′)2 + v′2dx − dx

dx

=
√
(1 + u′)2 + v′2 − 1. (2)
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where dl and dx are depicted in Fig. 1. Considering the
assumption of inextensibility for the beam, the strain in
the beam has to be equal to zero. Using Eq. (2) and the
Taylor expansion, relationship between deformations
is calculated as [6]:

u′ =
√
(1 − v′)2 − 1 ≈ −1

2
v′2. (3)

The kinetic and potential energies are defined to be used
in the Hamilton principle. The corresponding kinetic
energy T and the potential energy U are expressed as
[25]:

T = 1

2

∫ l

0
m(u̇2 + v̇2)dx, and (4)

U = 1

2

∫ l

0
Mc
∂ψ

∂x
dx . (5)

where the over-dot is the derivative with respect to t .
Mc is the moment and for the considered structure is
defined as [28]:

Mc = −
∫

Eeyd A, (6)

where E is the Young’s Modulus of elasticity. Consider-
ing the bending angle of Eq. (1), curvature is calculated
as [29]:

ρ = v′′(1 + u′)− v′u′′

(1 + u′)2 + v′2 . (7)

Using Eq. (7) and considering the uniformity of the
beam’s cross section, the moment is obtained. Substi-
tuting the moment into Eq. (5), and Eq. (3) into (4), the
kinetic and potential energies become:

T = 1

2

∫ l

0
m

([
∂

∂t

∫ x

0

1

2
v′2dx

]2

+ v̇2

)

dx, and

(8)

U = 1

2

∫ l

0
E I

(
v′′ + 1

2
v′′v′2

)2

dx, (9)

where I is the moment of inertia. Eqs. (8) and (9) are
used in the Hamilton principle, considering Fv is the
external force in the y direction. The resulting PDE and
boundary conditions are:

mv̈ + E Iviv + m

2

[
v′

∫ x

l

∫ x

0
(v̇′2 + v′v̈′)dxdx

]′

+E I
(
v′(v′v′′)′

)′ + Fv = 0, (10)

v = v′ = 0 at x = 0, and v′′ = v′′′ = 0 at x = l.

(11)

Note that in Eq. (10), (.)iv is the fourth derivative with
respect to x .

3 NMPPF controller design

To obtain a closed-form solution for the PDE of Eq.
(10), with the boundary conditions of (11), the Bubnov-
Galerkin approximation method [30] is implemented.
Separation of variables is performed such thatv(x, t) =∑∞

n=1 φn(x)qn(t), where qn(t) are the time-dependent
variables and φn(t) are the linear mode shapes of the
system, considered by the companion functions of:

φn(x) = cosh(λn x)− cos(λn x)

+cosh(λn)+ cos(λn)

sin(λn)+ sinh(λn)

× [sin(λn x)− sinh(λn x)] , (12)

where λn are the roots of the equation: 1 + cos(λn)

cosh(λn) = 0. Following the steps, resulting nonlin-
ear ODE for fundamental mode of the cantilever beam
becomes:

q̈(t)+ ηq q̇(t)+ ω2
qq(t)+ αq3(t)+ βq(t)q̇2(t)

+γ q2(t)q̇(t) = Fr (t)+ Fc(t). (13)

In Eq. (13), q(t) is the time-dependent variable of the
system, and Fc(t) is the control force. Fr (t) is the res-
onant disturbance force substituted for Fv , and it is
defined as: Fr (t) = f cos(�t), where f is the ampli-
tude and� is the frequency of the disturbance, respec-
tively. ηq = 2μqωq , whereμq is the damping ratio and
ωq is the frequency of the fundamental mode. α is the
curvature nonlinearity coefficient, and β and γ are the
inertia nonlinearity coefficients, which are defined as
[31]:

α = 2
∫ l

0 E I
[
φ′′

1 (x)
]2

[φ1(x)]2 dx
∫ l

0 m [φ1(x)]2 dx
, (14)

β = γ =
2

∫ l
0 φ1(x)

[
mφ′

1(x)
∫ x

l

∫ x
0 2

[
φ′

1(x)
]2dxdx

]′
dx

∫ l
0 m [φ1(x)]2 dx

.

(15)
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After having the system dynamics defined, the NMPPF
controller is introduced. The NMPPF consists of two
subsections of a second- and a first-order compen-
sator. Since the nonlinearities of the system that are
shown in Eq. (13) are cubic, a cubic nonlinear term
is added to the second-order subsection. The first-
order term which is basically a lossy integrator adds
more damping to the structure, where the second-order
term focuses on exact resonant frequency. The dynamic
description of the NMPPF controller is described
as:

r̈(t)+ ηr ṙ(t)+ ω2
r r(t)+ δr3(t) = κr q(t), (16)

ṡ(t)+ ωss(t) = κsq(t), (17)

where r(t) and s(t) are state variables of the second-
and first-order compensator, respectively. ηr = 2μrωr ,
whereμr is the damping ratio andωr is the frequency of
the secondary system. κr and κs are positive scalar con-
stants, named as controller gains. In the PPF controller,
the damping term of the compensator is considered high
enough to suppress the resonant vibrations at the fre-
quency of the compensator. In the MPPF, the frequency
of the compensator (ωr ) is picked relatively close to the
frequency of the system (ωq ), with very small damping
factor ofμr . The first-order term increases the damping
of the closed-loop system, where ωs may not necessar-
ily be equal toωr . The control loop is closed by setting:

Fc(t) = τr r(t)+ τss(t), (18)

where τr and τs are positive scalar feedback gains of
second- and first-order compensators. Figure 2 shows
the time-domain diagram representation of the closed-
loop system.

Fig. 2 Time-domain diagram of the NMPPF controlled system

4 Closed-loop system solution

Method of Multiple Scales is applied to find a uniform
nonlinear approximate solution near the fundamental
resonant mode of the structure [26]. To this end, two
time scales of T0 = t and T1 = εt are selected. Then,
the time derivatives are defined as:

d

dt
= D0 + εD1 + · · · , (19)

d2

dt2 = D2
0 + 2εD0 D1 + · · · , (20)

where Dn = ∂/∂Tn and ε is a bookkeeping parameter.
Eqs. (19) and (20) are substituted in Eqs. (13), (16),
and (17) that results in:

D2
0q + 2εD0 D1q + ηq D0q + εηq D1q + ω2

qq

+αq3 + βq (D0 + εD1)
2 q2 + γ q2 (D0 + εD1) q

+ · · · = f cos(�t)+ τr r + τss, (21)

D2
0r + 2εD0 D1r + ηr D0r + εηr D1r

+ω2
r r + δr3 + · · · = κr q, (22)

D0s + εD1s + ωss + · · · = κsq. (23)

Parameters of the equations have to be scaled to appear
in the same equations. Therefore, parameters are set
as: ηq = εη̂q , α = εα̂, β = εβ̂, γ = εγ̂ , τr =
ετ̂r , τs = ετ̂s, ηr = εη̂r , δ = εδ̂, κr = εκ̂r , κs = κ̂s ,
and f = ε f̂ . Scaled parameters are substituted into the
Eqs. (21)–(23); then, the variables q(t), r(t), and s(t)
are expanded by:

q(ε, T0, T1) = q0(T0, T1)+ εq1(T0, T1)+ · · · , (24)

r(ε, T0, T1) = r0(T0, T1)+ εr1(T0, T1)+ · · · , (25)

s(ε, T0, T1) = εs0(T0, T1)+ ε2s1(T0, T1)+ · · · .
(26)

where variables with ‘zero’ subscripts are the dominant
solutions and subscripts of ‘one’ show small variations
of the solutions. The order of Eq. (26) is selected higher
than the other two equations and provides inhomoge-
neous scaling of the variables. The reason is to keep the
first-order equation in pace with the other second-order
equations. The result is separated in orders of ε, which
yields to:

O(ε0):

D2
0q0 + ω2

qq0 = 0, (27)

D2
0r0 + ω2

r r0 = 0, (28)

123



www.manaraa.com

Nonlinear vibration suppression of flexible structures 839

O(ε1):

D2
0q1 + ω2

qq1 = f̂ cos(�T0)+ τ̂r r0 + τ̂ss0

− 2D0 D1q0 − η̂q D0q0 − α̂q3
0

− β̂q0 (D0q0)
2 − γ̂ q2

0 D0q0, (29)

D2
0r1 + ω2

r r1 = κ̂r q0 − δ̂r3
0 − 2D0 D1r0

− η̂r D0r0, (30)

D0s0 + ωss0 = κ̂sq0, (31)

O(ε2):

D0s1 + ωss1 = κ̂sq1 − D1s0. (32)

Order of ε2 is considered just for the s, since it has a
higher order of ε in the defined expansion of (26). This
is required to have the solution for s1. The solution
to the homogeneous differential equations of (27) and
(28) could be expressed as:

q0 = A(T1)e
iωq T0 + Ā(T1)e

−iωq T0 , (33)

r0 = B(T1)e
iωr T0 + B̄(T1)e

−iωr T0 , (34)

where A(T1) and B(T1) are complex-valued functions
that will be determined by eliminating the secular and
small-divisor terms at a later stage of the analysis, and
the over-bar is the complex conjugate function. Eq.
(33) is substituted into (31), and the ODE is solved.
The result is:

s0 = C(T1)e
−ωs T0 + κ̂s

ω2
q + ω2

s

(
ωs − iωq

)
A(T1)e

iωq T0

+ κ̂s

ω2
q + ω2

s

(
ωs + iωq

)
Ā(T1)e

−iωq T0 , (35)

where C(T1) is going to be obtained in further steps of
the solution. Next, Eqs. (33)–(35) are substituted into
the Eqs. (29)–(30). The simplified result is:

D2
0q1 + ω2

qq1

= f̂

2
ei�T0 + τ̂r

(
B(T1)e

iωr T0 + B̄(T1)e
−iωr T0

)

+τ̂s

(

C(T1)e
−ωs T0 + κ̂s

ω2
q +ω2

s

(
ωs −iωq

)
A(T1)e

iωq T0

+ κ̂s

ω2
q + ω2

s

(
ωs + iωq

)
Ā(T1)e

−iωq T0

)

−
[(
η̂q A(T1)+ 2D1 A(T1)

)
iωq eiωq T0

− (
η̂q Ā(T1)+ 2D1 Ā(T1)

)
iωq e−iωq T0

]

−α̂
(

A(T1)e
iωq T0 + Ā(T1)e

−iωq T0
)3

+β̂ω2
q

(
A(T1)e

iωq T0 + Ā(T1)e
−iωq T0

)

(
A(T1)e

iωq T0 − Ā(T1)e
−iωq T0

)2

−γ̂ ωq i
(

A(T1)e
iωq T0 + Ā(T1)e

−iωq T0
)2

(
A(T1)e

iωq T0 − Ā(T1)e
−iωq T0

)
, (36)

D2
0r1 + ω2

r r1 = κ̂r

(
A(T1)e

iωq T0 + Ā(T1)e
−iωq T0

)

−
[(
η̂r B(T1)+ 2D1 B(T1)

)
iωr eiωr T0

− (
η̂r B̄(T1)+ 2D1 B̄(T1)

)
iωr e−iωr T0

]

− δ̂
(

B(T1)e
iωr T0 + B̄(T1)e

−iωr T0
)3
. (37)

q1 and r1 are calculated using Eqs. (36) and (37) in time
domain such that:

q1 = Q1ei�T0+Q2eiωr T0+Q3e−ωs T0+Q4e3iωq T0+cc,

(38)

where

Q1 = f̂
/

2

ω2
q −�2 , Q2 = τ̂r B(T1)

ω2
q − ω2

r
, Q3 = τ̂sC(T1)

ω2
q + ω2

s
,

and Q4 = −
[
i γ̂ ωs + α̂ − β̂ω2

q

]
A3(T1)

8ω2
q

.

r1 = R1eiωq T0 + R2e3iωr T0 + cc, (39)

where

R1 = κ̂r A(T1)

ω2
r − ω2

q
, and R2 = δ̂B3(T1)

8ω2
r

.

In order to solve for s1, Eqs. (35) and (38) are sub-
stituted into (32) to form the ODE of:

D0s1 + ωss1 = κ̂s Q1ei�T0 + κ̂s Q2eiωr T0

+ (
κ̂s Q3 − D1C(T1)

)
e−ωs T0

+κ̂s Q4e3iωq T0 − κ̂s

ω2
q + ω2

s

× (
ωs − iωq

)
D1 A(T1)e

iωq T0 + cc,

(40)

where cc is the complex conjugate of terms. The solu-
tion to the ODE of Eq. (40) is:
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s1 = S1ei�T0 + S2eiωr T0 + S3e3iωq T0 + S4eiωq T0 + cc,

(41)

where

S1 = κ̂s Q1

ω2
s +�2 (ωs − i�) ,

S2 = κ̂s Q2

ω2
s + ω2

r
(ωs − iωr ) ,

S3 = κ̂s Q4

ω2
s + 9ω2

q

(
ωs − 3iωq

)
, and

S4 = κ̂s D1 A(T1)
(
ω2

q + ω2
s

)2

(
ω2

q − ω2
s + 2iωsωq

)
.

For the system to have a bounded solution, summa-
tion of the secular terms has to be equal to zero. Apply-
ing this condition to Eq. (40), C(T1) is calculated as:

C(T1) = cse

(
κ̂s τ̂s
ω2

q +ω2
s

)
T1
, (42)

where cs is a constant. Next step is to sort Eqs. (36) and
(37) and separate the secular terms as:

D2
0q1 + ω2

qq1

= f̂

2
ei�T0 + τ̂r B(T1)e

iωr T0 + τ̂sC(T1)e
−ωs T0

−
[
i γ̂ ωq + α̂ − β̂ω2

q

]
A3(T1)e

3iωq T0

− [(
η̂q A(T1)+ 2D1 A(T1)

)
iωq

+A2(T1) Ā(T1)
(

3α̂ + β̂ω2
q + i γ̂ ωq

)

+ τ̂s κ̂s

ω2
q + ω2

s
A(T1)

(
ωs − iωq

)
]

eiωq T0

+ cc, (43)

D2
0r1 + ω2

r r1 = κ̂r A(T1)e
iωq T0 − δ̂B3(T1)e

3iωr T0

−
(
η̂r B(T1)+ 2D1 B(T1)− 3i δ̂B2(T1)B̄(T1)

)

×iωr eiωr T0 + cc. (44)

Since the frequencies of the second-order compensator,
disturbance excitation, and main system are very close
to each other, the detuning parameters of σr and σ f are
defined. Using the small scale detuning parameters, the
frequencies are redefined as:

{
ωr = ωq + εσr ,

� = ωq + εσ f ,
(45)

Eliminating the secular terms in Eqs. (43) and (44)
yields to:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f̂
2 eiσ f T1 + τ̂r B(T1)eiσr T1

+ τ̂s κ̂s
ω2

q+ω2
s

(
ωs − iωq

)
A(T1)

− (
η̂q A(T1)+ 2D1 A(T1)

)
iωq

−A2(T1) Ā(T1)
(

3α̂ + β̂ω2
q + i γ̂ ωq

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

eiωq T0 = 0,

(46)
⎡

⎣
κ̂r A(T1)e−iσr T1 − 3δ̂B2(T1)B̄(T1)

− (
η̂r B(T1)+ 2D1 B(T1)

)
iωr

⎤

⎦ eiωr T0 = 0. (47)

To solve Eqs. (46) and (47), it is convenient to express
the solution in polar form:

A(T1) = 1

2
a(T1)e

iζa(T1), (48)

B(T1) = 1

2
b(T1)e

iζb(T1). (49)

Equations (48) and (49) are substituted into (46) and
(47); then, real and imaginary parts are separated, and
amplitude-phase modulating equations are extracted
as:

D1a(T1) = − η̂q

2
a(T1)− τ̂s κ̂s

ω2
q + ω2

s
a(T1)

+ f̂

2ωq
sin(σ f T1 − ζa(T1))

+ τ̂r

2ωq
b(T1) sin(σr T1 + ζb(T1)− ζa(T1))

+ γ̂

8
a3(T1), (50)

D1ζa(T1) = 1

8ωq
a2(T1)

(
3α̂ + β̂ω2

q

)
− τ̂s κ̂sωs

(ω2
q + ω2

s )ωq

− f̂

2ωqa(T1)
cos(σ f T1 − ζa(T1))

− τ̂r b(T1)

2ωqa(T1)
cos(σr T1 + ζb(T1)− ζa(T1)),

(51)

D1b(T1) = − η̂r

2
b(T1)+ κ̂r

2ωr
a(T1) sin(ζa(T1)

− σr T1 − ζb(T1)), (52)

D1ζb(T1) = 3δ̂

8ωr
b2(T1)− κ̂r a(T1)

2ωr b(T1)
cos(ζa(T1)

− σr T1 − ζb(T1)). (53)

Since all variables of Eqs. (50)–(53) are functions of
T1, equations could be transformed to the t-domain.
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In order to obtain the autonomous equation set, it is
considered that θa(t) = σ f t − ζa(t) and θb(t) = σr t +
ζb(t)−ζa(t). Using the transformation, the modulation
equations are expressed as:

ȧ = −
(
η̂q

2
+ τ̂s κ̂s

ω2
q + ω2

s

)

a + f̂

2ωq
sin(θa)

+ τ̂r

2ωq
b sin(θb)+ γ̂

8
a3, (54)

θ̇a = − 1

8ωq

(
3α̂ + β̂ω2

q

)
a2 + τ̂s κ̂sωs

(ω2
q + ω2

s )ωq

+ f̂

2ωq

1

a
cos(θa)+ τ̂r

2ωq

b

a
cos(θb)+ σ f , (55)

ḃ = − η̂r

2
b− κ̂r

2ωr
a sin(θb), (56)

θ̇b = 3δ̂

8ωr
b2 + f̂

2ωq

1

a
cos(θa)+

(
τ̂r b

2ωqa
− κ̂r a

2ωr b

)
cos(θb)

− 1

8ωq

(
3α̂ + β̂ω2

q

)
a2 + τ̂s κ̂sωs

(ω2
q + ω2

s )ωq
+ σr . (57)

5 Frequency response and stability analysis

In this section, frequency response of the system will
be extracted. The steady-state condition of the closed-
loop system is considered by setting:

ȧ = θ̇a = 0, and ḃ = θ̇b = 0. (58)

Applying the conditions of (58) to Eqs. (54)–(57)
yields to:

f̂

2ωq
sin(θa)

=
(
η̂q

2
+ τ̂s κ̂s

ω2
q + ω2

s

)

a + τ̂rωr η̂r

2ωq κ̂r

b2

a
− γ̂

8
a3,

(59)

f̂

2ωq
cos(θa)

= 1

8ωq

(
3α̂ + β̂ω2

q

)
a3 − τ̂s κ̂sωs

(ω2
q + ω2

s )ωq
a

− 3δ̂τ̂r

8ωq κ̂r

b4

a
− τ̂rωr

κ̂rωq

(
σr − σ f

) b2

a
− σ f a, (60)

sin(θb) = −ωr η̂r

κ̂r

b

a
, and (61)

cos(θb) = 3δ̂

4κ̂r

b3

a
+ 2ωr

κ̂r

(
σr − σ f

) b

a
. (62)

Using Eqs. (59)–(62), the frequency response is obtain-
ed in terms of two coupled equations as:

f̂ 2

4ω2
q

=
[(

η̂q

2
+ τ̂s κ̂s

ω2
q +ω2

s

)

a + τ̂rωr η̂r

2ωq κ̂r

b2

a
− γ̂

8
a3

]2

+
[

1

8ωq

(
3α̂+β̂ω2

q

)
a3− τ̂s κ̂sωs

(ω2
q +ω2

s )ωq
a− 3δ̂τ̂r

8κ̂ωq

b4

a
− τ̂rωr

κ̂rωq

(
σr − σ f

) b2

a
− σ f a

]2

, (63)

[
1 − ω2

r η̂
2
r

κ̂2
r

b2

a2

] 1
2

= 2ωr

κ̂r

(
σr − σ f

) b

a
+ 3δ̂

4κ̂r

b3

a
,

(64)

where Eqs. (63) and (64) are used to solve the
frequency-domain amplitudes of the main system and
the second-order compensator. Stability properties of
the solution are examined around the equilibrium point
expressed in Eq. (58). To this end, the Jacobian matrix
of the equation set of (54)–(57) using Eqs. (59)–(62) is
calculated by considering the variable set of:

X = [
a θa b θb

]
. (65)

The Jacobian matrix J̄ is given by:

J̄ =

⎡

⎢
⎢
⎣

J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

⎤

⎥
⎥
⎦ , (66)

where

J11 = −
(
η̂q

2
+ τ̂s κ̂s

ω2
q + ω2

s

)

+ γ̂

8
a3,

J12 = 1

8ωq

(
3α̂ + β̂ω2

q

)
a3 − τ̂s κ̂sωs

(ω2
q + ω2

s )ωq
a

− 3δ̂τ̂r

8ωq κ̂r

b4

a
− τ̂rωr

κ̂rωq

(
σr − σ f

) b2

a
− σ f a,

J13 = −ωr η̂r τ̂r

2ωq κ̂r

1

a
,

J14 = 3τ̂r δ̂

8ωq κ̂r

b3

a
+ τ̂rωr

κ̂rωq

(
σr − σ f

) b

a
,

J21 = −9

8
ωq

(
β̂ + γ̂ + α̂/ω2

q

)
a

+ τ̂s κ̂sωs

(ω2
q + ω2

s )ωq

1

a
+ σ f

a
,
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J22 = −
(
ηq

2
+ τ̂s κ̂s

ω2
q + ω2

s

)

− τ̂rωr η̂r

2ωq κ̂r

b2

a2 ,

J23 = 3τ̂r δ̂
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κ̂rωq

(
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) b

a2 ,

J24 = τ̂r η̂rωr

κ̂rωq

b2

a2 ,

J31 = η̂r

2

b

a
, J32 = 0, J33 = − η̂r

2
,

J34 = (
σ f − σr

)
b − 3δ̂

8ωr
b3,

J41 = J21 − 3δ̂

8ωr

b2

a
+ (
σ f − σr

) 1

a
,

J42 = J22,

J43 = 3δ̂

4ωr
b +

(
τ̂r

2ωq

1

a
+ κ̂r

2ωr

a

b2

)

×
(

3δ

4κ̂r

b3

a
+ 2ωr

κ̂r

(
σr − σ f

) b

a

)
, J44 = 0.

Having the arrays of the Jacobian matrix calculated, the
characteristic equation of the matrix is calculated by:

det
(

J̄ − λ̂I
)

= 0. (67)

Equation (67) provides the eigenvalue equation as:

a0λ̂
4 + a1λ̂

3 + a2λ̂
2 + a3λ̂+ a4 = 0, (68)

where values for λ̂ are eigenvalues of the Jacobian
matrix and ai are coefficients of the characteristic equa-
tion. The stability of the equilibrium state is deter-
mined by the signs of the real parts of the eigenval-
ues of the characteristic equation. The Routh-Hurwitz
stability criterion demands that for a stable system
the real parts of all of eigenvalues should be neg-
ative [32]. Based on this criterion to have the sys-
tem stable, the necessary and sufficient conditions
are:

ai > 0 (i = 0, . . . , 4), a1a2 − a0a3 > 0,

a1a2a3 − a0a2
3 − a1a2

4 > 0 (69)

6 Results and discussions

In this section, the frequency response of the system
is presented, and then, a comparison between perfor-
mances of the NMPPF and the PPF controller is pre-

sented to investigate and compare the efficiency of the
new approach. Then, the frequency response of the
closed-loop system is studied in more detail by ana-
lyzing the sensitivity of fundamental parameters of the
control system.

6.1 Frequency response of the nonlinear resonant
system

Before studying the closed-loop system, it is neces-
sary to present an illustration of the uncontrolled sys-
tem response. The open-loop solution of the system is
obtained using Eqs. (63) and (64). Numerical values of
the main system are listed in Table 1. Figure 3 shows
the frequency response of the uncontrolled system. The
dashed line shows the unstable region in the frequency
graph. The system behaves linearly for low amplitude
excitations (e.g., for f = 0.02). Vibration amplitudes
do not exceed the allowable limit, which is assigned
linear systems. The jump phenomenon is observed in
higher amplitude excitations.

Table 1 Numerical values of the main system

Variable ωq μq α β, γ

Value 4.5 0.015 18.5 4

Fig. 3 Frequency response of the flexible structure under differ-
ent excitation amplitudes
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Fig. 4 Frequency response of the controlled systems using PPF and NMPPF approaches. a The resonant system, b the resonant
controller

6.2 PPF and NMPPF controllers comparison

In this section, closed-loop solutions of the NMPPF
and the well-known PPF approach controlled systems
are examined and compared. Numerical values of the
gains and controller parameters of the PPF controller
are matched with the values of the NMPPF controller,
where ωr = ωs = 4.5, μr = 0.006, δ = 10, κr =
τr = 1, κs = τs = 1.4. Figure 4a shows the closed-
loop frequency responses of the PPF and NMPPF con-
trollers for the excitation amplitude of f = 0.06.
According to the controlled result and considering the
uncontrolled state in Fig. 3, the PPF controller has suit-
able suppression on the vibration amplitude at exact
resonance value (σ f = 0). However, as the excitation
frequency deviates from the origin, two peaks occur
at σ f = −0.12 and σ f = 0.26 with relatively large
amplitudes. The NMPPF controller has slightly better
suppression at exact resonance compared to the PPF.
In addition, the amplitude of the maximum peak in the
NMPPF controlled system response is 44 % lower than
the maximum amplitude of the PPF controlled system.
Figure 4b shows the resonant controller’s amplitude
using the two approaches. Resonant controller ampli-
tude is also lower using the NMPPF controller as a
result of the lower amplitude in the corresponding main
system response. In Ref. [12], performance of the PPF
controller has been compared to three other feedback
controllers with a simple gain, cubic displacement, and
nonlinear saturation control method. According to the
results in the mentioned reference, the PPF controller
has a higher level of suppression in comparison with the

Table 2 Numerical values of the NMPPF controller

Variable Value Variable Value

ωr 4.5 κr 2

μr 0.002 κs 2

ωs 4.5 τr 1

δ 0 τs 1

Fig. 5 Resonant system amplitude under NMPPF controller ver-
sus excitation amplitude and frequency

other controllers. Considering this fact and the obtained
result in Fig. 4, the superiority of the NMPPF controller
to the other approaches is also justified.
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Fig. 6 NMPPF compensator amplitude versus excitation ampli-
tude and frequency

6.3 NMPPF controller analysis

Performance of the NMPPF controller is discussed in
more detail here. Different parameters are varied, and
response of the system under the changes is inves-
tigated. Table 2 shows the default numerical values
that are selected for the system analysis. The closed-
loop system response is a function of the excitation
amplitude as well as the excitation frequency. Hence,
Figs. 5 and 6 show the response of the system and com-

pensator’s amplitude to excitation amplitude and fre-
quency. For lower values of excitation amplitude, jump
phenomenon is not observed in the response. As the
excitation amplitude increases and passes the margin of
f = 0.13, the nonlinear jump occurs in the frequency
response of the main system. The peak at the negative
side of the σ f axis experiences the frequency shift, but
does not undergo the amplitude jump. Compensator
amplitude peak value on the negative side of the σ f

axis is much larger than the other peak in the positive
side. The jump at the compensator frequency response
amplitude occurs for values of excitation amplitude
above f = 0.17, and it also happens at the positive
side peak.

The first parameter to consider isμr . Figure 7 shows
the amplitudes of the main system and controller under
different values ofμr . The excitation amplitude for the
rest of the analyses is considered as f = 0.04. Accord-
ing to Fig. 7a, increments in μr result in a higher-level
suppression of the resonant system in the overall band-
width of excitation. However, asμr increases, suppres-
sion at exact point of resonance decreases.

The other parameter that has a very significant effect
on the suppression performance is the second-order
compensator’s frequency. The effect of variation of this
parameter is studied by changes in the corresponding
detuning parameter, σr . However, since the controller
performance is dependent on the excitation frequency
too, vibration amplitude is depicted as a function of
both frequencies in Fig. 8. The most important result
of this graph is that the highest level of suppression
happens for the line σr = σ f . In other words, in order

Fig. 7 Frequency response of the closed-loop system for values of μr , a the resonant system, b the resonant controller
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Fig. 8 Resonant system amplitude under NMPPF controller ver-
sus excitation and compensation frequencies

Fig. 9 NMPPF compensator amplitude versus excitation and
compensation frequencies

to have maximum vibration attenuation, the frequency
of the second-order compensator has to be equal to
the excitation frequency, regardless of the main system
resonant frequency. It has been previously shown for
linear systems with excitations at resonant frequency
that the optimal value for the compensator frequency
is the main system’s frequency [21]. Figure 9 shows
the controller amplitude in the suppression process.
The minimum value on the line of σr = σ f occurs
at σr = σ f = 0. As the magnitude of the distance
from origin on that line increases, the output ampli-

Fig. 10 Resonant system amplitude under NMPPF controller
versus excitation and lossy integrator frequencies

Fig. 11 NMPPF compensator amplitude versus excitation and
lossy integrator frequencies

tude increases too. The controller output on the rest of
the (σr , σ f ) frequency plane could be considered as a
function of 1/|σ f − σr | in a rough estimation, where
|.| is the magnitude. As the difference increases, the
controller output amplitude decreases.

Frequency of the first-order compensator (ωs) is
another parameter that impacts the closed-loop response
of the system. Since the effect of the first-order com-
pensator has to be studied over the excitation frequency
domain, Fig. 10 is used to show the main system ampli-
tude for the changes of both ωs and σ f . According to
Fig. 10, variation ofωs does not have a significant effect
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Fig. 12 Closed-loop system response to κr and τr variations

on the suppressed vibration amplitude at resonance (the
lineσ f = 0). This is because the second-order compen-
sator undertakes the larger share in resonant suppres-
sion compared to the first-order compensator. Nonethe-
less, it affects the amplitudes of the two peak values
before and after the zero reference of the excitation
detuning parameter. The minimum amplitude occurs
atωs = 0, where the lossy integrator becomes a simple
integrator. Variation ofωs also affects the second-order
compensator amplitude b, as depicted in Fig. 11. As it
was demonstrated before, the left-hand side peak in
the compensator amplitude is maximum (see Fig. 7b).
However, for negative values of ωs , the right-hand side
peak increases more asωs goes deeper in negative side.

Next, efficacy of the controller gains is studied.
To this end, first, the gain values of the second-order
compensator, κr and τr , are varied and the results are
demonstrated in Fig. 12. According to Fig. 12a, incre-

ment of κr does not reduce the magnitude of the two
peak values in the system response. Nonetheless, vibra-
tion amplitudes at resonance (σ f = 0) are suppressed
better as κr increases. According to Fig. 12b on the
other hand, the second-order compensator amplitude
increases proportional to κr . Increments in τr of the
control law of Eq. (18) also result in better vibra-
tion amplitude suppression at exact resonant frequency
(Fig. 12c). In addition, the two peak values occur at far-
ther distances from the origin, as the graphs are widened
in the frequency domain. Figure 12d shows that τr

has inverse effect on the amplitude of the second-order
amplitude.

Figure 13 shows the effect of changes in the first-
order compensator gains, κs and τs . As it was discussed
earlier that the second-order compensator suppresses
the exact resonant amplitudes better, changes in κs and
τs of the first-order compensator do not influence that
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Fig. 13 Closed-loop system response to κs and τs variations

part of the solution in the graphs. σ f = 0 is a fixed
point in compensator amplitude graphs of Fig. 13b, d.
This also implies that the changes in the amplitude of
the first-order compensator do not affect the amplitude
of the second-order compensator for σ f = 0. How-
ever, higher gain values reduce the amplitude of the
main system in peak values. Control output amplitudes
also decrease as a result of main system amplitudes
reduction.

Finally, the influence of the nonlinear term (δ) on the
closed-loop system response is discussed. Existence
of the nonlinear term makes the solution of the con-
troller amplitude [Eq. (64)] system more complex. Fig-
ure 14 shows the NMPPF controlled system response
for variations of δ. Implementation of the nonlinear
term provides the opportunity to shift the minimum
value of the frequency response that for δ = 0 hap-
pens at σ f = 0. Negative values of δ shifts the local
minimum to left, and positive values shift it to right.

The same shift in graphs happens for the compensator
amplitude b.

6.4 Numerical and perturbation results comparison

In this section, numerical simulation results are pre-
sented in comparison with the approximation results.
The excitation amplitude is considered as f = 0.05,
and all gains are set equal to one. MATLAB® ode45
solver is implemented to solve the Eqs. (13), (16),
and (17) numerically, to obtain the frequency response
in the neighborhood frequencies of the fundamental
mode. The results of the perturbation solution and the
numerical results are shown in Fig. 15. According to the
results, the approximation and numerical results are in
good agreement with each other, as the result at exact
resonant frequency (σ f = 0) matches perfectly. The
maximum errors occur in peak amplitudes.
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Fig. 14 Influence of nonlinear term (δ) on closed-loop system response, μr = 0.006, and controller gains are set equal to 0.5

Fig. 15 Numerical and perturbation analysis results comparison

7 Conclusion

A new NMPPF controller was introduced in this paper
for nonlinear vibration attenuation of the primary mode
in presence of 1:1 internal resonance. The NMPPF con-
troller has a cubic nonlinear term devised in a second-
order resonant compensator accompanied by a lossy
integrator. Method of Multiple Scales was implemented
to obtain the closed-loop solution of the system. Sta-
bility analysis was performed on the system modula-
tion equations. To show the controller efficiency, per-
formance of the NMPPF and the conventional PPF con-
trollers were compared. The NMPPF controller had a
better suppression in the exact resonance, and also in
overall frequency domain. Influences of the first- and
second-order compensator frequencies were then dis-
cussed. Optimal value for the compensation frequency
in nonlinear systems was extracted as a function of

excitation frequency. In addition, the effects of the
controller gains and the nonlinear term on the system
response were presented and discussed. The nonlinear
term provides the opportunity to shift the local min-
imum of the controlled frequency response graph to
either side of the amplitude axes.
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